Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.086
Filtrar
1.
Zhongguo Zhen Jiu ; 44(4): 441-448, 2024 Apr 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38621732

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture (EA) with "intestinal disease prescription" on the intestinal mucosal barrier and NLRP3 inflammasome in rats with dextran sulfate sodium (DSS)-induced acute ulcerative colitis (UC), and explore the underlying mechanism of EA with "intestinal disease prescription" for the treatment of UC. METHODS: Thirty-two healthy male SPF-grade SD rats were randomly divided into a blank group, a model group, a medication group, and an EA group, with 8 rats in each group. Except for the blank group, the UC model was established by administering 5% DSS solution for 7 days. After modeling, the rats in the medication group were treated with mesalazine suspension (200 mg/kg) by gavage, while the rats in the EA group were treated with acupuncture at bilateral "Tianshu" (ST 25), "Shangjuxu" (ST 37) and "Zhongwan" (CV 12), with the ipsilateral "Tianshu" (ST 25) and "Shangjuxu" (ST 37) connected to the electrodes of the EA instrument, using disperse-dense wave, with a frequency of 10 Hz/50 Hz, and each intervention lasted for 20 minutes. Both interventions were performed once daily for 3 days. The general conditions of rats were observed daily. After intervention, the disease activity index (DAI) score was calculated; colon tissue morphology was observed using HE staining; serum levels of pro-inflammatory cytokines (interleukin [IL]-18, IL-1ß) were measured by ELISA; protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in colon tissues was detected by Western blot; positive expression of zonula occludens-1 (ZO-1) and Occludin in colon tissues was examined by immunofluorescence. RESULTS: Compared with the blank group, the rats in the model group exhibited poor general conditions, slow body weight gain, shortened colon length (P<0.01), increased DAI score and spleen index (P<0.01), elevated serum IL-18 and IL-1ß levels, and increased protein expression of NLRP3, ASC, and Caspase-1 in colon tissues (P<0.01), along with decreased positive expression of ZO-1 and Occludin in colon tissues (P<0.01). Compared with the model group, the rats in the medication group and the EA group exhibited improved general conditions, accelerated body weight gain, increased colon length (P<0.05), reduced DAI scores and spleen indexes (P<0.05), decreased serum IL-18 and IL-1ß levels, and lower protein expression of NLRP3, ASC and Caspase-1 in colon tissues (P<0.05), as well as increased positive expression of ZO-1 and Occludin in colon tissues (P<0.05). There were no significant differences in the above indexes between the medication group and the EA group (P>0.05). Compared with the blank group, the rats in the model group exhibited disrupted colon mucosal morphology, disordered gland arrangement, and atrophy of crypts, along with significant inflammatory cell infiltration. Compared with the model group, the rats in both the medication group and the EA group showed relatively intact colon mucosal morphology, with restored and improved gland and crypt structures, and reduced inflammatory cell infiltration. CONCLUSIONS: EA with "intestinal disease prescription" has a significant therapeutic effect on DSS-induced UC, possibly by regulating the expression of NLRP3 inflammasome and proteins related to the intestinal mucosal barrier, thereby alleviating symptoms of ulcerative colitis.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Ratos , Masculino , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/terapia , Inflamassomos/efeitos adversos , Interleucina-18 , Ratos Sprague-Dawley , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ocludina , Peso Corporal , Caspases/efeitos adversos
2.
J Ethnopharmacol ; 328: 118131, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38565408

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sarcandra glabra is officially named Zhong Jie Feng as a traditional medicine. In the nationality of Yao and Zhuang, it has been used to treat digestive diseases like stomachache and dysentery. Similarly, in Dai nationality, it has been used to treat intestinal diseases like gastric ulcers. However, the effect and mechanism of S. glabra on experimental ulcerative colitis (UC) are known. AIM OF STUDY: The main objective of this study was to investigate the effect and mechanism of S. glabra on experimental UC. MATERIALS AND METHODS: The chemical components in the water extract of S. glabra (ZJF) were analyzed by UPLC-MS/MS method. The HCoEpiC cell line was used to assess the promotive effect on intestinal proliferation and restitution. RAW264.7 cells were used to assess the in vitro anti-inflammatory effect of ZJF. The 3% DSS-induced colitis model was used to evaluate the in vivo effect of ZJF (4.5 g/kg and 9.0 g/kg). Mesalazine (0.5 g/kg) was used as the positive drug. ELISA, RT-qPCR, Western blot, and multiplex immunohistochemical experiments were used to test gene levels in the colon tissue. The H&E staining method was used to monitor the pathological changes of colon tissue. TUNEL assay kit was used to detect apoptosis of epithelial colonic cells. RESULTS: ZJF could alleviate the DSS-caused colitis in colon tissues, showing a comparative effect to that of the positive drug mesalazine. Mechanism study indicated that ZJF could promote normal colonic HCoEpiC cell proliferation and restitution, inhibit overexpression of pro-inflammatory cytokines, restore the M1/M2 ratio, decrease epithelial colonic cell apoptosis, rescue tight junction protein levels, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC. CONCLUSION: Our results indicated that S. glabra can promote intestinal cell restitution, balance immune response, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Mesalamina/efeitos adversos , Cromatografia Líquida , Interleucina-17/metabolismo , Espectrometria de Massas em Tandem , Colo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Fatores de Transcrição/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
PLoS One ; 19(4): e0301660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626146

RESUMO

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease of the digestive tract. Rauwolfia polysaccharide (Rau) has therapeutic effects on colitis in mice, but its mechanism of action needs to be further clarified. In the study, we explored the effect of Rau on the UC cell model induced by Lipopolysaccharide (LPS). METHODS: We constructed a UC cell model by stimulating HT-29 cells with LPS. Dextran sodium sulfate (DSS) was used to induce mice to construct an animal model of UC. Subsequently, we performed Rau administration on the UC cell model. Then, the therapeutic effect of Rau on UC cell model and was validated through methods such as Cell Counting Kit-8 (CCK8), Muse, Quantitative real­time polymerase chain reaction (RT-qPCR), Western blotting, and Enzyme-linked immunosorbent assay (ELISA). RESULTS: The results showed that Rau can promote the proliferation and inhibit the apoptosis of the HT-29 cells-induced by LPS. Moreover, we observed that Rau can inhibit the expression of NOS2/JAK2/STAT3 in LPS-induced HT-29 cells. To further explore the role of NOS2 in UC progression, we used siRNA technology to knock down NOS2 and search for its mechanism in UC. The results illustrated that NOS2 knockdown can promote proliferation and inhibit the apoptosis of LPS-induced HT-29 cells by JAK2/STAT3 pathway. In addition, in vitro and in vivo experiments, we observed that the activation of the JAK2/STAT3 pathway can inhibit the effect of Rau on DSS-induced UC model. CONCLUSION: In short, Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. This study provides a theoretical clue for the treatment of UC by Rau.


Assuntos
Alcaloides , Colite Ulcerativa , Colite , Rauwolfia , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Lipopolissacarídeos/farmacologia , Colite/metabolismo , Polissacarídeos/metabolismo , Alcaloides/farmacologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/metabolismo
4.
PeerJ ; 12: e16921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426148

RESUMO

Objective: Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by an unclear pathogenesis. This study aims to screen out key genes related to UC pathogenesis. Methods: Bioinformatics analysis was conducted for screening key genes linked to UC pathogenesis, and the expression of the screened key genes was verified by establishing a UC mouse model. Results: Through bioinformatics analysis, five key genes were obtained. Subsequent infiltration analysis revealed seven significantly different immune cell types between the UC and general samples. Additionally, animal experiment results illustrated markedly decreased body weight, visible colonic shortening and damage, along with a significant increase in the DAI score of the DSS-induced mice in the UC group in comparison with the NC group. In addition, H&E staining results demonstrated histological changes including marked inflammatory cell infiltration, loss of crypts, and epithelial destruction in the colon mucosa epithelium. qRT-PCR analysis indicated a down-regulation of ABCG2 and an up-regulation of IL1RN, REG4, SERPINB5 and TRIM29 in the UC mouse model. Notably, this observed trend showed a significant dependence on the concentration of DSS, with the mouse model of UC induced by 7% DSS demonstrating a more severe disease state compared to that induced by 5% DSS. Conclusion: ABCG2, IL1RN, REG4, SERPINB5 and TRIM29 were screened out as key genes related to UC by bioinformatics analysis. The expression of ABCG2 was down-regulated, and that of IL1RN, REG4, SERPINB5 and TRIM29 were up-regulated in UC mice as revealed by animal experiments.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Regulação para Baixo/genética , Proteínas Associadas a Pancreatite/genética
5.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542929

RESUMO

The oral delivery strategy of natural anti-oxidant and anti-inflammatory agents has attracted great attention to improve the effectiveness of ulcerative colitis (UC) treatment. Herein, we developed a novel orally deliverable nanoparticle, carboxymethyl chitosan (CMC)-modified astaxanthin (AXT)-loaded nanoparticles (CMC-AXT-NPs), for UC treatment. The CMC-AXT-NPs were evaluated by appearance, morphology, particle size, ζ-potential, and encapsulation efficiency (EE). The results showed that CMC-AXT-NPs were nearly spherical in shape with a particle size of 34.5 nm and ζ-potential of -30.8 mV, and the EE of CMC-AXT-NPs was as high as 95.03%. The CMC-AXT-NPs exhibited preferable storage stability over time and well-controlled drug-release properties in simulated intestinal fluid. Additionally, in vitro studies revealed that CMC-AXT-NPs remarkably inhibited cytotoxicity induced by LPS and demonstrated superior antioxidant and anti-inflammatory abilities in Raw264.7 cells. Furthermore, CMC-AXT-NPs effectively alleviated clinical symptoms of colitis induced by dextran sulfate sodium salt (DSS), including maintaining body weight, inhibiting colon shortening, and reducing fecal bleeding. Importantly, CMC-AXT-NPs suppressed the expression of pro-inflammatory cytokines like TNF-α, IL-6, and IL-1ß and ameliorated DSS-induced oxidative damage. Our results demonstrated the potential of CMC-modified nanoparticles as an oral delivery system and suggested these novel AXT nanoparticles could be a promising strategy for UC treatment.


Assuntos
Quitosana , Colite Ulcerativa , Colite , Nanopartículas , Humanos , Colite Ulcerativa/induzido quimicamente , Quitosana/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Colite/tratamento farmacológico , Xantofilas
6.
Expert Rev Clin Pharmacol ; 17(4): 403-412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441048

RESUMO

BACKGROUND AND AIMS: This posthoc analysis of the GEMINI and VISIBLE studies in ulcerative colitis (UC) and Crohn's Disease (CD) assessed exposure-efficacy of vedolizumab intravenous (IV) and subcutaneous (SC). METHODS: A previously described population pharmacokinetic model was used to predict average serum and trough concentrations at steady state (Cav,ss, Ctrough,ss) and simulate the transition from vedolizumab IV to SC. Efficacy was defined as clinical remission at week 52: complete Mayo score ≤ 2 points and no individual subscore > 1 point (UC), and CD activity index score ≤ 150 points (CD). RESULTS: Data were from 1968 patients (GEMINI 1 [n = 334], VISIBLE 1 [n = 216], GEMINI 2 [n = 1009], VISIBLE 2 [n = 409]) who received maintenance treatment with vedolizumab IV-Q8W, IV-Q4W, SC-Q2W, or placebo. Model-predicted Cav,ss for IV-Q8W and SC-Q2W was similar in UC and CD. Cav,ss was higher for IV-Q4W than IV-Q8W and SC-Q2W. Ctrough,ss values from IV and SC aligned well with pooled observed Ctrough by treatment group in UC and CD. Cav,ss was equivalent for SC and IV. For UC and CD, efficacy rates were greater in patients in the highest quartiles of vedolizumab exposure for both formulations. CONCLUSION: Exposure-efficacy relationships for IV and SC vedolizumab administration were comparable, confirming that both are equally effective during maintenance treatment.


Assuntos
Anticorpos Monoclonais Humanizados , Colite Ulcerativa , Doença de Crohn , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Doença de Crohn/tratamento farmacológico , Doença de Crohn/induzido quimicamente , Resultado do Tratamento , Fármacos Gastrointestinais/uso terapêutico
7.
Mol Nutr Food Res ; 68(7): e2300731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480985

RESUMO

SCOPE: Gut microbiota (GM) dysbiosis and dysregulated bile acids (BAs) metabolism have been linked to ulcerative colitis (UC) pathogenesis. The possibility of utilizing live probiotics with a defined BAs-metabolizing capability to modify the composition BAs for UC treatment remains unexplored. METHODS AND RESULTS: In this study, Strain GR-4 is sourced from traditional Chinese fermented food, "Jiangshui," and demonstrated the ability to deconjugate two common conjugated BAs by over 69% and 98.47%, respectively. It administers strain GR-4 to dextran sulfate sodium (DSS)-induced UC mice, and observes an overall alleviation of UC symptoms, as evidence by improved colon morphology, reduces inflammation and oxidative stress, and restores intestinal barrier function. Importantly, these effects are reliant on an intact commensal microbiota, as depletion of GM mitigated GR-4s efficacy. Metabolomics analysis unveils a decline in conjugated BAs and an increase in secondary BAs following GR-4 administration. GM analysis indicates that GR-4 selectively enriches bacterial taxa linked to BAs metabolism, enhancing GM's capacity to modify BAs. CONCLUSION: This research demonstrates the potential for natural fermented foods and probiotics to effectively manipulate BAs composition, including conjugated and secondary BAs, to alleviate UC symptoms, underscoring the benefits of these approaches for gut health.


Assuntos
Colite Ulcerativa , Colite , Probióticos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Metabolismo dos Lipídeos , Esteroides , Probióticos/uso terapêutico , Ácidos e Sais Biliares , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL
8.
Int J Biol Macromol ; 265(Pt 1): 130863, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490380

RESUMO

This study investigated the regulatory effects of Sporisorium reilianum polysaccharides (SRPS) on metabolism and the intestinal barrier in mice with colitis induced by dextran sulfate sodium (DSS). SRPS were resistant to the digestion of saliva, gastric juices, and intestinal fluid. SRPS significantly reduced the disease activity index and inhibited DSS-induced colon shortening. The expression of proinflammatory cytokines in the colon was normal (P < 0.05). Acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid contents increased. Moreover, 64 biomarker metabolites were affected, including 42 abnormal decreases and 22 abnormal increases caused by DSS, which targeted amino acid biosynthesis; tryptophan metabolism; protein digestion and absorption; aminoacyl-tRNA biosynthesis; and glycine, serine, and threonine metabolism. In addition, SRPS reduced goblet cell loss and increased mucin secretion. The short-chain fatty acid receptor GPR41 was activated, and zonula occludens-1 and occludin expression levels were upregulated. Epithelial cell apoptosis was inhibited by increased Bcl-2 and decreased Bax expression NLRP3, ASC, and caspase-1 protein levels decreased. Intestinal barrier damage improved, and colon inflammation was reduced. Thus, our preliminary findings reveal that SRPS regulates metabolism and has the potential to protect the intestinal barrier in ulcerative colitis mice.


Assuntos
Basidiomycota , Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo , 60435 , Mucosa Intestinal/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Polissacarídeos/efeitos adversos , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
9.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542210

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disorder affecting the colon, with symptomatology influenced by factors including environmental, genomic, microbial, and immunological interactions. Gut microbiota dysbiosis, characterized by bacterial population alterations, contributes to intestinal homeostasis disruption and aberrant immune system activation, thereby exacerbating the inflammatory state. This study assesses the therapeutic efficacy of intraperitoneal (IP) injected flavonoids (apigenin, luteolin, and xanthohumol) in the reduction of inflammatory parameters and the modulation of the gut microbiota in a murine model of ulcerative colitis. Flavonoids interact with gut microbiota by modulating their composition and serving as substrates for the fermentation into other anti-inflammatory bioactive compounds. Our results demonstrate the effectiveness of luteolin and xanthohumol treatment in enhancing the relative abundance of anti-inflammatory microorganisms, thereby attenuating pro-inflammatory species. Moreover, all three flavonoids exhibit efficacy in the reduction of pro-inflammatory cytokine levels, with luteolin strongly demonstrating utility in alleviating associated physical UC symptoms. This suggests that this molecule is a potential alternative or co-therapy to conventional pharmacological interventions, potentially mitigating their adverse effects. A limited impact on microbiota is observed with apigenin, and this is attributed to its solubility constraints via the chosen administration route, resulting in its accumulation in the mesentery.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Propiofenonas , Ratos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/diagnóstico , Apigenina/farmacologia , Apigenina/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Colo , Inflamação/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Colite/tratamento farmacológico
10.
Chin J Nat Med ; 22(3): 249-264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553192

RESUMO

Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1ß, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1ß, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inulina/metabolismo , Inulina/farmacologia , Inulina/uso terapêutico , Interleucina-18 , Codonopsis/metabolismo , Proteínas NLR/metabolismo , Frutanos/metabolismo , Frutanos/farmacologia , Frutanos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Claudina-1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Autofagia , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo , Colo/patologia
11.
J Agric Food Chem ; 72(13): 7055-7073, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520351

RESUMO

Ulcerative colitis (UC) is a major disease that has endangered human health. Our previous study demonstrated that Bifidobacterium longum subsp. longum YS108R, a ropy exopolysaccharide (EPS)-producing bacterium, could alleviate UC in mice, but it is unclear whether EPS is the key substance responsible for its action. In this study, we proposed to investigate the remitting effect of EPS from B. longum subsp. longum YS108R on UC in a DSS-induced UC mouse model. Water extraction and alcohol precipitation were applied to extract EPS from the supernatant of B. longum subsp. longum YS108R culture. Then the animal trial was performed, and the results indicated that YS108R EPS ameliorated colonic pathological damage and the intestinal barrier. YS108R EPS suppressed inflammation via NF-κB signaling pathway inhibition and attenuated oxidative stress via the Nrf2 signaling pathway activation. Remarkably, YS108R EPS regulated gut microbiota, as evidenced by an increase in short-chain fatty acid (SCFA)-producing bacteria and a decline in Gram-negative bacteria, resulting in an increase of propionate and butyrate and a reduction of lipopolysaccharide (LPS). Collectively, YS108R EPS manipulated the intestinal microbiota and its metabolites, which further improved the intestinal barrier and inhibited inflammation and oxidative stress, thereby alleviating UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Camundongos , Humanos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Bifidobacterium/metabolismo , Colo , Modelos Animais de Doenças , Bactérias , Inflamação , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL
12.
J Agric Food Chem ; 72(13): 7397-7410, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38528736

RESUMO

This study was designed to elucidate the colon microbiota-targeted release of nonextractable bound polyphenols (NEPs) derived from Fu brick tea and to further identify the possible anti-inflammatory mechanism in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. 1.5% DSS drinking water-induced C57BL/6J mice were fed rodent chow supplemented with or without 8% NEPs or dietary fibers (DFs) for 37 days. The bound p-hydroxybenzoic acid and quercetin in NEPs were liberated up to 590.5 ± 70.6 and 470.5 ± 51.6 mg/g by in vitro human gut microbiota-simulated fermentation, and released into the colon of the mice supplemented with NEPs by 4.4- and 1.5-fold higher than that of the mice supplemented without NEPs, respectively (p < 0.05). Supplementation with NEPs also enhanced the colonic microbiota-dependent production of SCFAs in vitro and in vivo (p < 0.05). Interestingly, Ingestion of NEPs in DSS-induced mice altered the gut microbiota composition, reflected by a dramatic increase in the relative abundance of Dubosiella and Enterorhabdus and a decrease in the relative abundance of Alistipes and Romboutsia (p < 0.05). Consumption of NEPs was demonstrated to be more effective in alleviating colonic inflammation and UC symptoms than DFs alone in DSS-treated mice (p < 0.05), in which the protective effects of NEPs against UC were highly correlated with the reconstruction of the gut microbiome, formation of SCFAs, and release of bound polyphenols. These findings suggest that NEPs as macromolecular carriers exhibit targeted delivery of bound polyphenols into the mouse colon to regulate gut microbiota and alleviate inflammation.


Assuntos
Colite Ulcerativa , Colite , Microbiota , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Inflamação/tratamento farmacológico , Fibras na Dieta , Polifenóis , Colo , Chá , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico
13.
J Ethnopharmacol ; 328: 118123, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium, recognized as "Shihu" in traditional Chinese medicine, holds a rich history of medicinal utilization documented in the Chinese Pharmacopoeia. Ancient texts like "Shen Nong Ben Cao Jing" extol Dendrobium's virtues as a superior herbal medicine fortifying "Yin" and invigorating the five viscera. Dendrobium is extensively employed for the treatment of gastrointestinal inflammatory disorders, showcasing significant therapeutic efficacy, particularly against ulcerative colitis (UC), within the realm of Chinese ethnopharmacology. Dendrobium plays crucial pharmacological roles due to its rich content of polysaccharides, alkaloids, phenanthrenes, and bibenzyls. Gigantol, a prominent bibenzyl compound, stands out as one of the most vital active constituents within Dendrobium, the gigantol content of Dendrobium leaves can reach approximately 4.79 µg/g. Its significance lies in being recognized as a noteworthy anti-inflammatory compound derived from Dendrobium. AIM OF THE STUDY: Given the pivotal role of gigantol as a primary active substance in Dendrobium, the therapeutic potential of gigantol for gastrointestinal diseases remains enigmatic. Our present investigation aimed to evaluate the therapeutic effects of gigantol on dextran sulfate sodium (DSS)-induced colitis and reveal its potential mechanism in countering UC activity. MATERIALS AND METHODS: The protective efficacy of gigantol against colitis was assessed by examining the histopathological changes and conducting biochemical analyses of colon from DSS-challenged mice. Assessments focused on gigantol's impact on improving the intestinal epithelial barrier and its anti-inflammatory effects in colonic tissues of colitis mice. Investigative techniques included the exploration of the macrophage inflammatory signaling pathway via qPCR and Western blot analyses. In vitro studies scrutinized macrophage adhesion, migration, and chemotaxis utilizing transwell and Zigmond chambers. Furthermore, F-actin and Rac1 activation assays detailed cellular cytoskeletal remodeling. The potential therapeutic target of gigantol was identified and validated through protein binding analysis, competitive enzyme-linked immunosorbent assay (ELISA), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. The binding sites between gigantol and its target were predicted via molecular docking. RESULTS: Gigantol ameliorated symptoms of DSS-induced colitis, rectified damage to the intestinal barrier, and suppressed the production of pro-inflammatory cytokines in colonic tissues. Intriguingly, gigantol significantly curtailed NF-κB signaling activation in the colons of DSS-induced colitis mice. Notably, gigantol impaired the ß2 integrin-dependent adhesion and migratory capacity of RAW264.7 cells. Moreover, gigantol notably influenced the cytoskeleton remodeling of RAW264.7 cells by suppressing Vav1 phosphorylation and Rac1 activation. Mechanistically, gigantol interacted with ß2 integrin, subsequently diminishing binding affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: In conclusion, these findings elucidate that gigantol ameliorates DSS-induced colitis by antagonizing ß2 integrin-mediated macrophage adhesion, migration, and chemotaxis, thus it may impede macrophage recruitment and infiltration into colonic tissues. This study suggests that gigantol shows promise as a viable candidate for clinical colitis therapy.


Assuntos
Bibenzilas , Colite Ulcerativa , Colite , Guaiacol/análogos & derivados , Camundongos , Animais , Antígenos CD18/metabolismo , Antígenos CD18/uso terapêutico , Colo , Quimiotaxia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Bibenzilas/farmacologia , Anti-Inflamatórios/efeitos adversos , Macrófagos/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , NF-kappa B/metabolismo
14.
J Food Sci ; 89(4): 2450-2464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462851

RESUMO

Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Metabólicas , Animais , Camundongos , Lactobacillus , Colite Ulcerativa/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , RNA Ribossômico 16S , Ácido Butírico , Bifidobacterium , Firmicutes , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
15.
J Ethnopharmacol ; 328: 117956, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428658

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY: This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS: 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1ß, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iß, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS: GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1ß, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1ß. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS: GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Th17 , Ocludina/metabolismo , RNA Ribossômico 16S/metabolismo , Camundongos Endogâmicos CBA , Colite/tratamento farmacológico , Citocinas/metabolismo , Trinitrobenzenos/metabolismo , Trinitrobenzenos/farmacologia , Trinitrobenzenos/uso terapêutico , Anti-Inflamatórios/farmacologia , Peso Corporal , Caspases/metabolismo , Modelos Animais de Doenças , Colo
16.
Int Immunopharmacol ; 130: 111608, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38428143

RESUMO

This study investigates HRas-dependent mechanisms in the disruption of regulatory T (Treg) cells and T helper 17 (Th17) cells balance in ulcerative colitis (UC). Comprehensive RNA sequencing and bioinformatics analyses revealed elevated HRas and MAPK pathway-related protein expression in UC samples. Using a murine UC model induced by dextran sulfate sodium (DSS), HRas silencing was found to promote Treg cell differentiation and suppress Th17 cell production, effectively restoring balance. Inactivation of the MAPK pathway played a pivotal role in this rebalancing effect. In vivo experiments further confirmed that HRas silencing mitigated colon tissue damage in DSS-induced mice, emphasizing its potential as a therapeutic strategy for UC.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/tratamento farmacológico , Colo , Células Th17 , Linfócitos T Reguladores , Diferenciação Celular , Sulfato de Dextrana/farmacologia , Colite/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
17.
Front Immunol ; 15: 1284181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455036

RESUMO

Background and aims: Favourable clinical data were published on the efficacy of CT-P13, the first biosimilar of infliximab (IFX), in pediatric inflammatory bowel disease (IBD); however, few studies have compared the effect on endoscopic healing (EH) and drug retention rate between the IFX originator and CT-P13. Therefore, we aimed to compare EH and the drug retention rate between the IFX originator and CT-P13. Methods: Children with Crohn's disease (CD) and ulcerative colitis (UC)/IBD-unclassified (IBD-U) at 22 medical centers were enrolled, with a retrospective review conducted at 1-year and last follow-up. Clinical remission, EH and drug retention rate were evaluated. Results: We studied 416 pediatric patients with IBD: 77.4% had CD and 22.6% had UC/IBD-U. Among them, 255 (61.3%) received the IFX originator and 161 (38.7%) received CT-P13. No statistically significant differences were found between the IFX originator and CT-P13 in terms of corticosteroid-free remission and adverse events. At 1-year follow-up, EH rates were comparable between them (CD: P=0.902, UC: P=0.860). The estimated cumulative cessation rates were not significantly different between the two groups. In patients with CD, the drug retention rates were 66.1% in the IFX originator and 71.6% in the CT-P13 group at the maximum follow-up period (P >0.05). In patients with UC, the drug retention rates were 49.8% in the IFX originator and 56.3% in the CT-P13 group at the maximum follow-up period (P >0.05). Conclusions: The IFX originator and CT-P13 demonstrated comparable therapeutic response including EH, clinical remission, drug retention rate and safety in pediatric IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Criança , Infliximab/uso terapêutico , Resultado do Tratamento , Anticorpos Monoclonais/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Doença de Crohn/tratamento farmacológico
18.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488031

RESUMO

Ulcerative colitis (UC) is a chronic idiopathic inflammatory condition affecting the rectum and colon. Inflammation and compromisation of the intestinal mucosal barrier are key in UC pathogenesis. Resveratrol (Res) is a naturally occurring polyphenol that exhibits anti­inflammatory and antioxidant properties. Nuclear factor erythroid­2­related factor 2/heme oxygenase 1 (Nrf2/HO­1) pathway regulates occurrence and development of numerous types of diseases through anti­inflammatory and antioxidant activity. However, it is not clear whether Nrf2/HO­1 pathway is involved in the treatment of Res in UC. Therefore, the present study aimed to investigate whether Res modulates the Nrf2/HO­1 signaling pathway to attenuate UC in mice. Dextran sulfate sodium (DSS) was used to induce experimental UC in male C57BL/6J mice. Disease activity index (DAI) and hematoxylin eosin (H&E) staning was used to assessed the magnitude of colonic lesions in UC mice. ELISA) was utilized to quantify inflammatory cytokines (IL­6, IL­1ß, TNF­α and IL­10) in serum and colon tissues. Immunohistochemistry and Western blot were used to evaluate the expression levels of tight junction (TJ) proteins [zonula occludens (ZO)­1 and Occludin] in colon tissues. Pharmacokinetic (PK) parameters of Res were derived from TCMSP database. Networkpharmacology was employed to identify the biological function and pharmacological mechanism of Res in the process of relieving UC, and the key target was screened. The binding ability of Res and key target was verified by molecular docking. Finally, the effectiveness of key target was substantiated by Western blot. Res decreased DAI, ameliorated histopathological changes such as crypt loss, disappeatance of the mucosal epithelium, and inflammatory infiltration in mice. Additionally, Res decreased expression of pro­inflammatory cytokines IL­6, IL­1ß and TNF­α and increased anti­inflammatory factor IL­10 expression. Res also restored the decreased protein expression of ZO­1 and occludin after DSS treatment, increasing the integrity of the intestinal mucosal barrier. The PK properties of Res suggested that Res possesses the therapeutic potential for oral administration. Network pharmacology revealed that Res alleviated UC through anti­inflammatory and antioxidant pathways, and confirmed that Nrf2 has a high binding affinity with Res and is a key target of Res against UC. Western blotting demonstrated that Res treatment increased the protein levels of Nrf2 and HO­1. In conclusion, Res treatment activated the Nrf2/HO­1 pathway to decrease clinical symptoms, inflammatory responses, and intestinal mucosal barrier damage in experimental UC mice.


Assuntos
Experimentação Animal , Colite Ulcerativa , Colite , Masculino , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Interleucina-10/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Colo/patologia , Antioxidantes/metabolismo , Interleucina-6/metabolismo , Ocludina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana , Modelos Animais de Doenças , Colite/patologia
19.
BMC Microbiol ; 24(1): 96, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521930

RESUMO

BACKGROUND: Unbalanced gut microbiota is considered as a pivotal etiological factor in colitis. Nevertheless, the precise influence of the endogenous gut microbiota composition on the therapeutic efficacy of probiotics in colitis remains largely unexplored. RESULTS: In this study, we isolated bacteria from fecal samples of a healthy donor and a patient with ulcerative colitis in remission. Subsequently, we identified three bacterial strains that exhibited a notable ability to ameliorate dextran sulfate sodium (DSS)-induced colitis, as evidenced by increased colon length, reduced disease activity index, and improved histological score. Further analysis revealed that each of Pediococcus acidilactici CGMCC NO.17,943, Enterococcus faecium CGMCC NO.17,944 and Escherichia coli CGMCC NO.17,945 significantly attenuated inflammatory responses and restored gut barrier dysfunction in mice. Mechanistically, bacterial 16S rRNA gene sequencing indicated that these three strains partially restored the overall structure of the gut microbiota disrupted by DSS. Specially, they promoted the growth of Faecalibaculum and Lactobacillus murinus, which were positively correlated with gut barrier function, while suppressing Odoribacter, Rikenella, Oscillibacter and Parasutterella, which were related to inflammation. Additionally, these strains modulated the composition of short chain fatty acids (SCFAs) in the cecal content, leading to an increase in acetate and a decrease in butyrate. Furthermore, the expression of metabolites related receptors, such as receptor G Protein-coupled receptor (GPR) 43, were also affected. Notably, the depletion of endogenous gut microbiota using broad-spectrum antibiotics completely abrogated these protective effects. CONCLUSIONS: Our findings suggest that selected human-derived bacterial strains alleviate experimental colitis and intestinal barrier dysfunction through mediating resident gut microbiota and their metabolites in mice. This study provides valuable insights into the potential therapeutic application of probiotics in the treatment of colitis.


Assuntos
Colite Ulcerativa , Colite , Enterococcus faecium , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , 60435 , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/terapia , Bacteroidetes , Escherichia coli , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
20.
Int Immunopharmacol ; 130: 111778, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38432147

RESUMO

OBJECTIVE: To investigate the mechanism of action of fatty acid receptors, FFAR1 and FFAR4, on ulcerative colitis (UC) through fatty acid metabolism and macrophage polarization. METHODS: Dextran sulfate sodium (DSS)-induced mouse model of UC mice was used to evaluate the efficacy of FFAR1 (GW9508) and FFAR4 (GSK137647) agonists by analyzing body weight, colon length, disease activity index (DAI), and histological scores. Real-time PCR and immunofluorescence analysis were performed to quantify the levels of fatty acid metabolizing enzymes and macrophage makers. FFA-induced lipid accumulation in RAW264.7 cells was visualized by Oil Red O staining analysis, and cells were collected to detect macrophage polarization by flow cytometry. RESULTS: The combination of GW9508 and GSK137647 significantly improved DSS-induced UC symptoms, caused recovery in colon length, and decreased histological injury. GW9508 + GSK137647 treatment upregulated the expressions of CD206, lipid oxidation enzyme (CPT-1α) and anti-inflammatory cytokines (IL-4, IL-10, IL-13) but downregulated those of CD86, lipogenic enzymes (ACC1, FASN, SCD1), and pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α). Combining the two agonists decreased FFA-induced lipid accumulation and increased CD206 expression in cell-based experiments. CONCLUSION: Activated FFAR1 and FFAR4 ameliorates DSS-induced UC by promoting fatty acid metabolism to reduce lipid accumulation and mediate M2 macrophage polarization.


Assuntos
Colite Ulcerativa , Ácidos Graxos não Esterificados , Macrófagos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metilaminas/farmacologia , Metilaminas/uso terapêutico , Camundongos Endogâmicos C57BL , Propionatos/farmacologia , Propionatos/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...